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Antiphase chaos and intensity dependent dissipations
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The dynamics of a laser with an intracavity second harmonic crystal is analyzed in a model with two modes
of one polarization and a third mode orthogonally polarized. In regimes of global mode coupling, antiphase
chaos affects all modes while the intensity maxima of the third mode appear locked on a period-one dynamics.
We explain this curious feature in terms of periodic decoupling of the modes with orthogonal polarizations and
intensity dependent dissipations which force the trajectories onto extremely narrow manifolds. The effect of
intensity dependent dissipations on Lyapunov numbers calculated in specific parts of the chaotic attractor is
also described.@S1063-651X~99!09402-7#

PACS number~s!: 05.45.2a, 42.65.Sf
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I. INTRODUCTION

In recent years much attention has focused upon the
currence of antiphase dynamics in globally coupled mu
mode lasers. The root of such interest is the pioneering w
of Baer @1# on the dynamics generated by a multimode~N
coupled modes! solid state laser with losses due to intraca
ity second harmonic generation. The model introduced
Baer has since been extended significantly by Roy and
laborators@2# to include the effects of the birefringence
the intracavity elements and the polarization of each mo
This model has been studied intensively from a nonlin
dynamics viewpoint both theoretically and numerically. T
diverse range of dynamical phenomena encountered incl
among others, intermittency@3# and period doubling@4#
routes to chaos, elimination of chaos@5#, chaotic itinerancy
@6# and, more importantly for our analysis, antiphase dyna
ics @7#. Also, in some instances, good qualitative agreem
has been shown between the model and experiments@7,8#.

Of particular interest is the occurrence of antiphase
namics. Here the pulsations of modes with a given polar
tion are synchronized to that of orthogonally polariz
modes. The case of three mode antiphase dynamics is
ticularly striking and has been studied in some detail in R
@9#. Here two modes oscillate orthogonally to a third. T
onset of pulsations from the steady state occurs via a H
bifurcation @4#. One critical parameter in this system is
geometrical factorg that accounts for the relative angle b
tween the fast axes of the intracavity elements and also p
delays due to the birefringence of such elements. Indeedg
is changed the system is seen to pass through a regio
chaotic dynamics after a period doubling cascade. One
triguing finding of Ref.@9# was that while chaos is seen
develop in the dynamics of the two modes of the same
larization, no chaotic behavior appeared in the third ortho
nally polarized mode. In their paper, Mandel and Wang
scribed this effect as an effective dynamical independenc
the modes due to the antiphase relationship between m
of orthogonal polarizations@9#: ‘‘effective’’ in the sense that
the modes pulsing with an antiphase relationship are not
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coupled in a strict sense. The third mode is then unable
‘‘see’’ the chaotic pulsing of the first two modes and th
remains periodic.

In this paper we show that if one expands the scale of
dynamics of the third mode via a logarithmic transformati
of the intensities then chaos is indeed observed in the t
evolution of the orthogonally polarized mode because of
coupling among all modes. What remains surprising is
observation that even if the dynamics of the third mode
chaotic, its peak intensity and period remain very close
periodic oscillations. Our main result is to explain this pec
liar feature by showing that periodically the third mode b
comes decoupled and experiences large intensity depen
dissipations. This forces the trajectory onto a very narr
manifold where widely different initial conditions keep ge
erating very close values of the third mode peak intens
The intensity maxima of the third mode look periodic but
dynamics is chaotic. We support our explanation with t
numerical evaluation of the divergence of the total flow, t
divergence of the three modes taken separately and via l
Lyapunov numbers.

The paper is organized as follows. The model of Ref.@2#
is briefly revised in Sec. II. Here we introduce the logarit
mic transformation used to show that chaos affects the
namics of all three coupled modes~Sec. III!. In Sec. III we
also show that antiphase dynamics leads to periodic de
pling of the modes. When the third mode has a high int
sity, its evolution can be described as an overdamped o
lation in a modified Toda potential. Sec. IV is dedicated
the analysis of the chaotic dynamics in terms of the div
gence of the flow. We first show that the time-depend
divergence of the flow greatly simplifies after the logarithm
transformation. We then provide a clear-cut explanation
the ‘‘periodicity’’ of the peak intensities of the third mode i
terms of periodic dynamical decoupling and intensity dep
dent dissipations. Sec. V is devoted to another general
ture of systems with intensity dependent dissipations: w
variations of Lyapunov numbers in different parts of t
phase space. In particular, we show that the maximum~posi-
tive! Lyapunov number of antiphase chaos is locally ne
tive when the intensity of the third mode is high. A fin
discussion and conclusions are contained in Sec. VI.
1683 ©1999 The American Physical Society
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II. THE MODEL

The rate equations for a multimode Nd:YAG ring las
with coupling and losses due to intracavity second harmo
generation of a potassium titanyl phosphate~KTP! crystal
are written as@2#

dIk

dT
5S Gk2a2geI k22e(

j Þk
m jkI j D I k , ~1!

dGk

dT
5tFg2S 11I k1b(

j Þk
I j DGkG , ~2!

wherek51,2,. . . ,N is the modal index andN the number of
modes. Here,I k and Gk are, respectively, the intensity an
gain associated with thekth longitudinal mode;a is the cav-
ity loss parameter,g is the small-signal gain, ande is a
coefficient that gives a measure of the conversion efficie
of the intensity at the fundamental frequency into a mode
the doubled frequency~its value is dependent on the prope
ties of the KTP crystal!. Furthermore,b (0,b,2) is a
cross saturation parameter that gives a measure of the
petition among the various longitudinal modes for a giv
population inversion,t is equal totc /t f where tc is the
cavity round-trip time,t f is the population lifetime andT
5t/tc . In this study the ‘‘active’’ parameter isg (0<g
<1), which corresponds to a geometrical factor depend
upon the orientation of the fast axis of the YAG crystal re
tive to the fast axis of the KTP crystal and also accounts
the phase delays imposed by these two birefringent intra
ity elements. In this system the existence of longitudi
modes of orthogonal polarizations is accounted for by
factor m jk . As suchm jk5g if modesj andk have the same
polarization andm jk512g if modesj andk are orthogonally
polarized. As in many studies of this system we have m
the assumption thata, g, b, and e are the same for al
modes. It is important to note that cross saturation of
active medium (bI jGk) and sum-frequency generation du
to the KTP crystal (2em jkI j I k) ensure global coupling
among the modes.

As the small signal gain is increased the solutions of E
~1! and ~2! change from the steady state to a periodic os
lation via a Hopf bifurcation@4#. The simplest manifestation
of antiphase dynamics is a periodic state in which the mo
intensities have similar profiles, but are shifted in time
P/N whereP is the period andN is the number of modes
Many different types of dynamical behavior are possible
this system but we will concentrate on the antiphase cha
regime. Erneux and Mandel@10# have shown that antiphas
dynamics can be obtained with as few coupled modes as
In this paper, however, we want to focus on the possibility
chaotic motion confined to modes with the same polariza
during antiphase dynamics. In order to study such a situa
the minimum number of coupled modes isN53, modes 1
and 2 having the same polarization and mode 3 being
thogonally polarized.

Mandel and Wang@9# studied the dynamical behavior o
theN53-mode case in detail. In particular they showed t
for tc /t f50.002, b50.292, a50.02, g50.095, e50.05,
andg decreasing from 0.56 to 0.5161 a full period doubli
cascade to chaos takes place. The surprising thing is
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while the intensities of the first two modes and the to
intensity clearly display the doubling and chaotic behavi
the intensity of the third mode appears to remain anchore
a period one oscillation~‘‘dynamical independence’’!. This
intriguing phenomenon appears to be also in agreement
experiments on a Nd:YAG laser with modulated pump@11#.
The reasonable explanation provided in Ref.@9# from the
direct observation of the intensity pulses is that the antiph
oscillations result in mode 3 evolving with a different d
namics to modes 1 and 2 because ‘‘mode 3 is already
when modes 1 and 2 reach their peaks, and therefore mo
does not record the chaotic nature of the other two mod
@9#.

To further investigate the phenomenon of dynamical
dependence we note that the equations for the intensitieI k
contain a multiplicativeI k factor to all terms. This suggest
that the dynamics is better unfolded when using a new se
variablesSk5 ln Ik as demonstrated by Oppo and Politi@12#
for single-mode lasers of classB. After this change of vari-
ables, the initial system of equations becomes

Ṡk5Gk2a2ge exp~Sk!22e(
j Þk

m jk exp~Sj !, ~3!

Ġk5tFg2S 11exp~Sk!1b(
j Þk

exp~Sj ! DGkG . ~4!

For e5b50 ~i.e., no intracavity KTP crystal! one trivially
obtains uncoupled rate equations, one set for each longit
nal mode. Such equations correspond to damped oscillat
in a Toda potential@12#. A single oscillation in a Toda po-
tential can be separated into a lethargy timeT1 during which
the populationGk grows and the output intensity is close
zero and a spike timeT2 during which the peak intensity o
the output pulse is reached@12#. It is easy to see that the
energy dissipations of a single-mode laser take place ma
during the spike timeT2 . In fact, by evaluating the diver
gence of the flow one obtains

div Fk5
]Ṡk

]Sk
1

]Ġk

]Gk
52t@11exp~Sk!#52t~11I k!,

~5!

which shows a constant rate of dissipations during the le
argy time and a variable~and, in principle, much larger! rate
of dissipations during the spike time. The single-mode la
equations in the logarithmic scaling are perhaps the simp
example of a dynamical system with intensity dependent
vergence~i.e., dissipations! in nonlinear optics. Dynamica
flows F(x) with variable dependent dissipations are defin
by the condition

div F~x!52G2H~x!, ~6!

whereG is a real number larger or equal to zero andH is a
positive definite function of the dynamical variablesx. We
will see in Sec. IV that Eqs.~3! and ~4! form a dynamical
flow with intensity dependent dissipations and that this is
reason why the third mode can maintain ‘‘period-one’’ pe
intensities while modes 1 and 2 display chaotic oscillatio
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FIG. 1. Period doubling route to chaos in the logarithm (S3) of the third laser mode intensity. After a chaotic window the system o
again returns to periodic behavior displayed in the last panel forg50.513 861. The other parameters are given at the beginning of Sec
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III. ANTIPHASE CHAOS AND PERIODIC
DECOUPLING

Our study starts from the numerical investigation of R
@9#. We taketc /t f50.002, b50.292, a50.02, g50.095,
e50.05 and consider 0.5<g<0.56. Throughout our numeri
cal analysis we use a standard variable step Adams inte
tor. We start first from the period doubling cascade lead
to chaos for decreasingg from 0.56 to 0.5. It is clear from
Figs. 1~a!–1~f!, which display the temporal evolution ofS3
5ln I3, that mode 3 follows the same period doubling rou
to chaos displayed by modes 1 and 2.~Note that all quanti-
ties are given in dimensionless units.! One clearly observes
oscillating ‘‘minima’’ during the lethargy times of mode
while the maxima of bothI 3 andS3 would appear to repea
themselves after each period of the fundamental.

Figures 2 and 3 present the main finding of Ref.@9# in the
chaotic regime but withg50.5145. The time evolution o
the intensity of mode 3 looks periodic while the intensities
the equally polarized modes 1 and 2 display the underly
chaotic dynamics@Figs. 2~b! and 2~c!#. Pulses of modes 1
and 2 still occur at regular intervals since antiphase ch
affects the pulse amplitudes but not their phases@9#. Figure
3~a! shows a three-dimensional projection of the s
dimensional chaotic attractor on the (I 3 ,G3 ,G1) subspace.
The related two-dimensional~2D! projections are presente
in Fig. 3~b!. For completeness we also present in Fig. 3~c!
the projections of the attractor in the (I 1 ,I 2 ,I 3) subspace. It
.

ra-
g

f
g
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is striking to note that while the majority of the 2D proje
tions contain clear signatures of chaos, the 2D projectionI 3
vs G3 looks like a period-one orbit. This phenomenon w
interpreted by Mandel and Wang as an effective dynam
independence of orthogonal laser modes where the cha
dynamics of modes 1 and 2 is not ‘‘recorded’’ by mode
@9#.

The logarithmic transformation helps us to better und
stand the mode evolution during antiphase dynamics. W
the chaotic attractor is unfolded in the (S3 ,G3 ,G1) subspace
one can see the spreading of the trajectories on all pro
tions ~see Fig. 4!. In particular, we reproduce the projectio
(S3 ,G3) of the third orthogonally polarized mode in Fig.
where a magnification of the region of the attractor cor
sponding to large values of the intensityI 3 is also displayed.
The chaotic evolution of modes 1 and 2 is indeed recor
by mode 3 since the parameter values correspond to gl
coupling. What is still intriguing is that the chaos of mode
becomes undetectable when monitoring, for example,
maxima of the intensityI 3 . This phenomenon cannot be e
plained by dynamical independence any longer since
logarithmic transformation clearly shows that mode 3 is ta
ing an active part in the antiphase chaos. We note howe
that during antiphase dynamics mode coupling terms
widely change in magnitude leading to alternance betw
strong and weak mode-coupling regimes. In particu
wheneverI 3 is large whileI 1 and I 2 are small, the dynamic
evolution of mode 3 is effectively decoupled from modes
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FIG. 2. Time evolution of antiphase chaos in the total intensityI tot ~a! and in the modal intensitiesI 1 ~b!, I 2 ~c!, and I 3 ~d! for g
50.5145. The other parameters are the same as Fig. 1.
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and 2 and ruled, to first approximation, by

Ṡ35G32a2ge exp~S3!, ~7!

Ġ35t$g2@11exp~S3!#G3%. ~8!

This does not mean that mode 3 is decoupled from mod
and 2 since their dynamics is strongly affected by the evo
tion of mode 3. Conversely whenI 3 is close to zero, the
evolution of modes 1 and 2 affect mode 3 but not vice ver
For brevity we call these dynamical regimes ‘‘decouple
and refer to the oscillation between them as ‘‘periodic d
coupling.’’ However, it is important to note that the deco
pling is only unidirectional.

Going back to the situation ofI 3@I 1 ,I 2 , we obtain from
Eqs. ~7! and ~8! that the temporal evolution of mode 3
periodically described by the following second-order diffe
ential equation

S̈31tṠ3@11~11ge/t!exp~S3!#1t@a2g

1~a1ge!exp~S3!1ge exp~2S3!#50. ~9!
1
-

a.
’
-

Mode 3’s dynamics then corresponds to strongly dam
oscillations on a time scale ofAt in a modified Toda poten-
tial of the form

V~S!5~a1ge!exp~S!1
ge

2
exp~2S!2~g2a!S, ~10!

which is displayed in Fig. 6, with and without the modific
tion (ge/2)exp(2S). Damping takes the third mode intensi
quickly to the minimum of the potential given by

I min5
1

2
AS a

ge
21D 2

1
4g

ge
2

1

2S a

ge
11D . ~11!

The trajectory then remains very close to such a value oI 3
~for the parameters of Fig. 6I min51.036 . . . ) until the cou-
pling with modes 1 and 2 starts to grow. The first effect
the growing intensitiesI 1 andI 2 is to increase the magnitud
of the fixed terma in Eq. ~7! thus decreasing the slope of th
negative side ofV(S) until the minimum I min disappears.
Then, the mode-3 intensity begins to drop towards zero.
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FIG. 3. Projections of the six-dimensional strange attractor during antiphase chaos~a! on the subspace (I 3 ,G3 ,G1), ~b! on the planes
(I 3 ,G3), (I 3 ,G1), and (G1 ,G3), ~c! on the planes (I 3 ,I 2), (I 3 ,I 1), and (I 2 ,I 1). The parameters are the same as for Fig. 2.
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ter the pulse formed by modes 1 and 2,S3 is reinjected into
the modified Toda potential~10! and the cycle repeats agai

At this stage we should emphasize the difference betw
the mode-3 dynamics of equations~3! and~4! and that of the
decoupled equations~7! and ~8! when I 3 is low. In the case
of single-mode class-B dynamics, Eqs.~7! and ~8! with no
losses, it has been shown that ‘‘firing’’ of the laser intens
occurs after a long duration~lethargy time! where the popu-
lation grows slowly@12# ~see the flat lower part of the dashe
orbit in Fig. 7!. The dynamics are quite different when let
argy times occur during antiphase oscillations in the mu
mode system~3!, ~4!, see Fig. 2. After the single modeI 3
dynamics in the Toda potential loses stability, i.e., esca
from pointB of the solid curve in Fig. 7, the system quick
reaches pointA where the gainG3 is at its maximum but it is
not able to trigger the nextI 3 pulse as yet. In contrast to th
single classB mode laser with no losses, it is the destab
n

-

s

zation of the orthogonally polarized modes that trigger
next firing of theI 3 intensity via the sudden decrease of t
cross-mode losses@see the last term of Eq.~3!#. To further
clarify the role played by the gainG3 during the lethargy
time we have plotted, in Fig. 8, the temporal evolution f
the antiphase dynamics of Eqs.~3! and~4! @Fig. 8~a!# and for
the case of a single-mode classB laser with no losses@Fig.
8~b!#. The vertical dashed lines correspond to the firi
times. During the lethargy times ofI 3 the dynamics of the
third mode is not decoupled from the other modes and
Toda potential picture described above does not apply.

An analogous, yet very different, dynamics takes pla
during the decoupling at smallI 3 values. In this case the
dynamics of modes 1 and 2 is described by coupled osc
tors in modified Toda potentials. However, since the aim
the next section is to provide a clear-cut explanation of
pseudo-period-one behavior of the maxima ofI 3 in terms
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of periodic decoupling and the intensity dependent diss
tions we leave this periodically decoupled regime to futu
studies.

Before concluding this section, we point out that the log
rithmic transformation is trivially singular forI k50 and thus
requires initial conditions of all the mode intensities to be
small as desired but different from zero. One may object t
the deterministic dynamics may take the trajectory back
I k50 before the generation of the nextk-mode pulse, thus
creating problems for the integration of Eqs.~3! and~4!. This
is, however, not possible since it is easy to show that
surfaces withI k50 are invariant manifolds of the syste
and that onceI k50 is reached, then thek mode is removed
from the dynamics. To maintain the physical reliability
the model, one needs then to consider the effect of inten

FIG. 4. ~a! Projections of the six-dimensional strange attrac
during antiphase chaos~a! on the subspace (S3 ,G3 ,G1), and~b! on
the planes (S3 ,G3), (S3 ,G1), and (G1 ,G3). The parameters are
the same as for Fig. 2.
-
e

-

s
at
o

e

ity

fluctuations whenI k is very small but different from zero
Such fluctuations automatically exclude the possibility
reachingI k50 and then remove the need of considering
singularity of the logarithmic transformation.

IV. ANTIPHASE CHAOS AND INTENSITY DEPENDENT
DISSIPATIONS

The logarithmic transformation introduced in Sec. II n
only helps to show that mode 3 is chaotic but also that it c
be used to exhibit that the multimode laser model under
vestigation belongs to the same class of dynamical syst
with variable dependent divergence of the kind~5!, as the
single-mode laser. In the case of a three-mode laser the
vergence of the original system~1! and ~2! is given by

div FI5G11G21G323a22e@g~ I 11I 2!

1~12g!~ I 11I 212I 3!#2ge~ I 11I 21I 3!

2t@31~112b1ge/t!~ I 11I 21I 3!#. ~12!

It is difficult to asses from this form of the divergence, th
rate of contraction or expansion of the flow around a gene
trajectory. However, after applying the transformationSi
5 ln Ii(i51,2,3) the divergence of the flow changes to

div FS52t$31~112b1ge/t!

3@exp~S1!1exp~S2!1exp~S3!#%

52t@31~112b1ge/t!~ I 11I 21I 3!#

52t@31~112b1ge/t!I tot#. ~13!

A first inspection shows that the instantaneous value of
divergence at a generic timet differs before and after the
logarithmic transformation. Since such a transformation
nonlinear but everywhere invertible~once the invariant
manifolds correspondent toI k50 are removed!, the
asymptotic time-average value of the divergence defined

^div F&5 lim
T→`

1

TE0

T

~div F !dt ~14!

is invariant under the logarithmic transformation. A simp
comparison of Eqs.~12! and~13! implies that the time aver-
age of the quantityQ defined as

^Q&[^G11G21G323a22e@g~ I 11I 2!

1~12g!~ I 11I 212I 3!#2ge~ I 11I 21I 3!& ~15!

tends to zero asT→`. This is numerically verified, for ex-
ample, for the antiphase chaos of Eqs.~1! and ~2! in Fig. 9.
It is important to note that the time-averaged asymptotic d
sipations are independent of the gain variables and of
cavity lossesa, a nontrivial result that would not appea
unless the logarithm transformation of Ref.@12# is employed.

Thus the logarithmic transformation serves not only
uncover the hidden dynamics of the mode-3 intensity
also to show clearly that the dissipations in this system
intensity dependent. There is nothing strange in the non
sipative nature of the cavity loss terms since part of the

r
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FIG. 5. Projection of the six-dimensional strange attractor during antiphase chaos on the plane (S3 ,G3). The inset shows a region of th
attractor with heavy contraction. The parameters are the same as for Fig. 2.
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ergy provided by the external pumpg is extracted in the
laser output. Thus the terms accounting for the effect of
output mirrors in the original equations describe processe
energy flow and not of energy loss as gorgeously outline
@12#.

Expression~13! unequivocally shows that the model o
the three-mode laser with intracavity second harmonic g
eration belongs to the class of dynamical systems with in
sity dependent dissipations. Note also that this result is
valid in the case of a generic number of modesN since the
divergence of the transformed flow is

div FS52t$N1@11~N21!b1ge/t#I tot%. ~16!

One of the major implications of Eqs.~13! and ~16! is that
each orbit of the dynamical system experiences different
els of contraction depending upon the region of phase sp
it currently resides in. Dissipations increase when the to
intensity increases while they remain close to a constant
if all the mode intensities are low. For the values of t
parameters of the antiphase chaos of Figs. 2 and 3, we
that the total intensity contribution to the dissipatio
2tI tot(112b1ge/t) is always between 5 and 7 time
larger than the fixed contribution given by23t. It is also
important to note that more than 95% of the intensity dep
dent contribution to the dissipations comes from the ter
that describe the intensity dependent losses due to se
harmonic generation in the Eqs.~1!. Finally, the particular
e
of
in

n-
n-
so

v-
ce
al
te

nd

-
s
nd

form of Eq. ~13! allows us to define a contribution to th
total dissipation per mode given by

div Fk[2t$11@11~N21!b1ge/t#I k%. ~17!

It is useful for our purposes to separate the different term
the single-mode divergence according on their physical
gin. The first term2t represents losses due to spontane
emission. The term2t(11ge/t)I k is labeled here as
‘‘self’’-mode dissipation and is composed of single-mo
laser intensity losses@cf. Eq. ~5!# and dissipation due to the
intensity losses in the second harmonic generation. Fina
the term2t(N21)bI k is labeled here as ‘‘cross’’-mode dis
sipation and describes losses due to modek on modesj Þk
through the second harmonic intracavity crystal.

We have numerically evaluated the total and single-mo
dissipations during antiphase dynamics and, in particular,
tiphase chaos. Since the total intensity during antiph
chaos remains always above a certain value~0.98 for the
parameter configuration of Fig. 2!, the chaotic attractor doe
not visit regions of the phase space where the total diss
tion is low. Things are very different for the dissipation
associated with each mode~17! since the modal intensitie
oscillate from close to zero to just below 1.5 in our norm
ized units. WhenI k is smaller than say 1022 the contribution
of modek to the dissipations is negligible. Then, only th
modes with sufficiently large intensity during a cycle of th
antiphase dynamics contribute to the energy dissipations
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particular, we note that during half of the antiphase cy
while I 3 is low, both modes 1 and 2 can provide no
negligible contributions to the dissipations. However, duri
the opposite phase of the antiphase cycle, mode 3 take
sponsibility for the majority of the system dissipations. Sin

FIG. 6. Modified Toda potential~10! for the same parameters a
Fig. 2 ~solid line!. The dashed curve shows the Toda potential wi
out the modificationge/2 exp(2S) induced by the second harmoni
crystal.

FIG. 7. I 3 vs G3 oscillations.~1!: Motion generated in the mul-
timode system. PointsA and B represent quasisteady states ofI 3

and G3 . ~2!: Shifted (G310.027) oscillations in the single-mod
laser Toda potential.
e

re-
e

the total dissipations have a fairly small excursion, we exp
from these considerations that, on average, mode 3 con
utes almost twice as much to the system divergence
modes 1 and 2 taken individually. This effect is simply
result of the antiphase nature of the oscillations and is cle
verified in Fig. 10~apart from an obvious bias term2t due
to the constant contribution from the spontaneous emiss
of each mode! where the calculation of the asymptotic tim
averaged dissipations of the entire flow and that due to
modes taken separately are presented.

Let us focus now on the dissipations during periodic d
coupling with largeI 3 and smallI 1 and I 2 . It is easy to see
that the total dissipations~16! are mainly given by the spon
taneous emission contribution23t due to all modes and by

-

FIG. 8. G3 vs time in the three-mode laser~a! and the undamped
single-mode laser~b!. Dashed lines indicate intensity pulse firing

FIG. 9. Time average of the quantityQ of Eq. ~15!.
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an intensity dependent contribution2(112b1ge/t)I 3 due
to the third mode only@see Eq.~17!#. Due to periodic decou-
pling, the dynamics on the two dimensional projecti
(I 3 ,G3) is described by Eq.~9! and the dissipations on suc
a plane are due to single-mode spontaneous emission an
self-mode terms

D1[2t@11~11ge/t!I 3#. ~18!

This immediately means that the dissipations in the fo
dimensional projection space (I 1 ,G1 ,I 2 ,G2) are given by

D2[22t@11bI 3#, ~19!

and are due to spontaneous emission and cross-mode te
The fact that D2 contains I 3 is no surprise since
(I 1 ,G1 ,I 2 ,G2) are affected by the dynamics of the thir
mode during periodic decoupling and there are cross-m
losses induced by the second harmonic crystal. It is eas
see that the contributionD1 is far bigger thanD2 and as such
it constitutes the largest contribution to the total dissipat
wheneverI 3 is large. This is numerically verified in Table
where the separate contributions to the dissipations are
vided into two categories (I 3.s and I 3,s), averaged in
time and tabled for different values of the thresholds during
the antiphase chaos. It is then possible to conclude that
ing periodic decoupling at large intensities of the third mo
the largest amount of dissipations take place on the tw
dimensional sections, (I 3 ,G3) thus squeezing the chaoti
manifold to a narrow sheet. Whatever the values
(I 1 ,G1 ,I 2 ,G2) provided thatI 1 andI 2 are small, the projec-
tions of the chaotic trajectories on the (I 3 ,G3) section@or
equivalently on the (S3 ,G3) sections# will approach each
other at an exponential rate ofd52331022 ~see the first
column of Table I!. This means that regardless of the inje
tion values ofI 3 and G3 into the modified Toda potential
intensity dependent dissipations will quickly relax their va

FIG. 10. Plots of the time average of the contribution to t
divergence of each modêdiv Fi& ( i 51,3) and the total system di
vergencê div Ftot&.
the

-

ms.

e
to

n
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e
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-

ues close to the same trajectory and the chaotic dynam
will keep passing in the vicinity of the same values ofI 3 ~or
S3) over and over again. This fact combined with the amp
tude nature of antiphase chaos@9# forces very similar values
of I 3 ~or S3) and G3 to be repeated after one period of th
antiphase dynamics in agreement with what was observe
Figs. 3~b! and Fig. 5~especially its inset!.

We would like to stress that the explanation of t
pseudo-period-one behavior of the dynamics ofI 3 provided
here is based on two fundamental ingredients:~a! periodic
decoupling, which makes the dynamics ofI 3 andG3 negli-
gibly affected by the other variables wheneverI 3 is large and
I 1 and I 2 are small, and~b! intensity dependent dissipation
that explain why the chaotic attractor is squeezed in this p
of the phase space to a narrow sheet~see the inset of Fig. 5!.
It is also relevant to add that the narrowness of the inters
tion of the chaotic attractor with the (S3 ,G3) plane displayed
in Fig. 5 does not mean that the attractor is a tube si
orbits that appear very close in Fig. 5 may be quite dist
from each other in the complete phase space.

V. GLOBAL AND LOCAL LYAPUNOV EXPONENTS

An objection to the explanation provided in the last se
tion for the appearance of pseudo-period-one behavior of
third mode is that the presence of positive Lyapunov nu
bers has not been taken into consideration. In this section
focus first on the spectrum of the global Lyapunov numb
during antiphase chaos and show that the magnitude of
largest Lyapunov number cannot affect the strong contr
tion rates discussed above. More dramatically, we show
that the strong intensity dependent dissipations due to la
I 3 can have crucial effects on ‘‘local’’ Lyapunov number
i.e. contraction~expansion! rates calculated in specific re
gions of the phase space.

Fig. 11 shows a calculation of the Lyapunov spectrum
the antiphase chaos atg50.5145. Note the very long nu
merical integration necessary to obtain well defin
asymptotic quantities~see inset of Fig. 11!. We have checked
the correctness of the numerical result by comparing the s

TABLE I. Contributions to the divergenceD1 @see Eq.~18!#,
andD2 @see Eq.~19!# and total divergence@see Eq.~13!# above and
below threshold valuess of the intensityI 3 . Columns one and two
are the divergence contributionD1 , column three is the contribu
tion D2 while columns four and five contain the data for the to
flow divergence.

D1 /1022 D1 /1022 D2 /1022 div F/1022 div F/1022

s (I 3.s) (I 3,s) (I 3.s) (I 3.s) (I 3,s)

0.1 22.8703 20.2237 20.5125 23.6298 23.6380
0.2 22.9521 20.2239 20.5159 23.6316 23.6356
0.3 22.9908 20.2552 20.5176 23.6331 23.6338
0.4 23.0156 20.2654 20.5186 23.6346 23.6322
0.5 23.0341 20.2799 20.5194 23.6360 23.6308
0.6 23.0495 20.2973 20.5200 23.6375 23.6293
0.7 23.0637 20.3202 20.5206 23.6277 23.6334
0.8 23.0778 20.3546 20.5212 23.6258 23.6334
0.9 23.0937 20.4172 20.5219 23.6446 23.6233
1.0 23.1166 20.6055 20.5229 23.6526 23.6190
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of all six Lyapunov numbers and the asymptotic total div
gence~see Fig. 10!. In spite of the very different numerica
methods used we obtained^div F&523.633 43331022 and
( il i523.633 52631022, i.e., a difference less than 1026.
The slow rate of asymptotic convergence of Lyapunov nu
ber calculations~and of the time averaged divergences
shown in the last section! is an intrinsic aspect of system
with variable dependent dissipations since rates of cont
tion and expansion change in different regions of the ph
space. The convergence rate for the evaluation of the m
mum Lyapunov number with a given accuracy is in our ca
up to 100 times longer than, for example, in the Lore
chaotic attractor, which has a constant dissipation rate o
the entire phase space.

The analysis of the Lyapunov spectrum shows that
antiphase chaos described here is fairly weak since the
only one positive eigenvalue two orders of magnitu
smaller than the flow divergence. During periodic deco
pling at large values ofI 3 the rate of contraction on th
two-dimensional plane (I 3 ,G3) is of the order ofd523
31022, i.e., more than two orders of magnitude bigger th
the largest positive Lyapunov number. This clearly prov
that the direction of orbit separation, if any, has to be p
pendicular to the (I 3 ,G3) plane in agreement with our pre
vious picture of the topology of the chaotic attractor as
narrow sheet in this region of the six-dimensional pha
space.

The independence of the pseudo-period-one dynamic
mode 3 from the presence of antiphase chaos~i.e., positive
Lyapunov numbers! is further justified when we consider th
effect of strong intensity dissipations on the largest posit
Lyapunov number. We have separated the calculation of
largest Lyapunov number above and below a certain thre
old values of the intensityI 3 . These numerical values ar
defined as ‘‘local’’ Lyapunov numbers because they re
only to a part of the strange attractor. The list of loc
Lyapunov

FIG. 11. Asymptotic convergence of the Lyapunov spectr
during antiphase chaos. The parameters are the same as for F
The inset shows an expanded view of the two largest Lyapu
exponents.
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numbers for different values ofs in presented in Table II.
During periodic decoupling with largeI 3 the local Lyapunov
number which on average will generate the largest posi
Lyapunov number, turns negative. We verify the correctn
of these calculations by checking that the sum of the t
local Lyapunov numbers~above and belows) keeps gener-
ating the largest time-averaged Lyapunov number once
time averages are appropriately taken into account~see the
third column of Table II!. The fact that the local Lyapunov
number is negative has a negligible effect on what was
scribed above. Orbits are getting closer not only in t
(I 3 ,G3) projections but also in all other projections yet wi
a much smaller contraction rate. The local Lyapunov num
turning negative with largeI 3 is also in perfect agreemen
with the difference in asymptotic total divergences abo
and belows as shown in last two columns of Table I. Such
difference may appear to be small but is enough to coun
act the effect of the small positive Lyapunov number.

One may object that a similar alternance between lo
positive and local negative Lyapunov numbers can also t
place for the first negative Lyapunov exponent, thus
introducing the local chaos for largeI 3 . This, however, can-
not be the case since the difference between the asymp
total divergences above and belows cannot justify an excur-
sion of local Lyapunov numbers of the order of 1023.

VI. CONCLUSIONS

In this paper we have shown that energy dissipations
models of lasers with intracavity second harmonic genera
occur mainly at high output powers via nonlinear losses d
to the KTP crystal. Another generic feature of these syste
is the occurrence of antiphase dynamics due to compe
modes of orthogonal polarizations. The combination of th
two generic features results in a splitting of dissipations
tween the two groups of orthogonally polarized modes.
the case of a group of equally polarized modes being form
by just one laser mode, dissipations are concentrated in
region of the phase space where the intensity of such a
mode is high and its dynamics are not affected by the ot
modes~periodic decoupling!. In such a region the attracto
~chaotic or periodic! is strongly compressed to a very narro

. 2.
v

TABLE II. Local maximum Lyapunov exponent above and b
low threshold valuess of the intensityI 3 . The third column con-
tains the sum of the local Lyapunov contributions suitably avera
in time.

lmax/1023 lmax/1023 lmax/1023

s (I 3.s) (I 3,s)

0.1 0.2588 20.1482 0.07615
0.2 0.1637 20.02346 0.07615
0.3 0.09017 0.06081 0.07615
0.4 0.03153 0.1236 0.07615
0.5 20.02019 0.1761 0.07615
0.6 20.07264 0.2269 0.07615
0.7 20.1308 0.2803 0.07615
0.8 20.2005 0.3394 0.07615
0.9 20.2900 0.4044 0.07615
1.0 20.4333 0.4589 0.07615
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manifold perpendicular to the plane of the intensity and g
of the lone mode. Such narrowing can be so strong that lo
Lyapunov numbers~i.e. local rates of convergence or dive
gence of neighboring orbits! can be seriously affected to th
extent that they are all negative even in the presence of
otic motion. The final and most intriguing effect of the in
tensity dependent dissipations in systems with antiphase
otic dynamics is that the maxima of the intensity of the lo
mode in one polarization appear periodic in spite of the
derlying chaotic motion that affects and couples all of t
laser modes.

We have first used a logarithmic transformation of t
mode intensities@12# to show that terms usually associat
with energy dissipations, such as cavity losses, correspon
real dynamical terms to energy flows. Then, for a three-m
laser with modes 1 and 2 polarized orthogonally to mode
we have provided theoretical and numerical evidence of
riodic decoupling~where the third mode affects the dynam
ics of modes 1 and 2 but the inverse is not true!, intensity
dependent dissipations and strong phase-space contra
when the intensity of mode 3 is large. As a conseque
chaotic trajectories are funnelled into a narrow manifo
where displacements perpendicular to the trajectory o
(I 3 ,G3) projection relax exponentially at a rate of approx
mately 331022 in normalized time units. With a single pos
tive Lyapunov exponent of the order of 1024 the attractor is
so strongly squeezed that exponential divergence of ne
trajectories becomes impossible to detect when monito
large intensitiesI 3 . This corresponds to forcing many diffe
ent orbits on the same chaotic attractor to generate almos
same value for the peak of the intensity of mode 3 as
served in the numerical simulations. As a consequence,
riodic decoupling and intensity dependent dissipations
tend and further elucidate the idea of the effect
‘‘dynamical independence’’ of orthogonal modes sugges
in Ref. @9# as the mechanism for the explanation of perio
d,
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one-like oscillations of mode-3 intensity during chaotic d
namics of a three-mode laser with intracavity second h
monic generation.

The effects described here are robust deterministic
tures that are only marginally affected by noise. In fact, a
tiphase chaos, and consequently periodic decoupling, ha
ready been shown to survive noisy dynamics while it
trivial to show that average contraction rates remain un
tered when small noise terms are added to the dynam
equations. This means that our explanation of the pseu
period-one behavior of the third orthogonally polarized mo
during antiphase chaos, which is based on the intensity
pendent dissipations is robust to stochastic perturbations

Before concluding we would like to stress that th
pseudo-period-one oscillation of mode 3 during chaotic e
lution is just one of the many phenomena associated w
variable dependent flow divergence typical of single a
multimode class-B lasers. For example, in limiting cases
class-B lasers with injected signals@13# or coupled to each
other @14#, phase-space dependent contraction rates cou
to reversibility leads to coexistence of conservative and d
sipative dynamics. Here we have presented evidence tha
cal Lyapunov numbers can be strongly affected by flow
vergences which are variable dependent. Such
phenomenon is no surprise if one thinks about the ph
space separated in regions of high expansion rates and
gions of high contraction rates. The dynamical behavior
the laser output depends on both the local~contraction rates!
and global~chaos! topology of the phase space visited by t
trajectory.
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