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Antiphase chaos and intensity dependent dissipations
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The dynamics of a laser with an intracavity second harmonic crystal is analyzed in a model with two modes
of one polarization and a third mode orthogonally polarized. In regimes of global mode coupling, antiphase
chaos affects all modes while the intensity maxima of the third mode appear locked on a period-one dynamics.
We explain this curious feature in terms of periodic decoupling of the modes with orthogonal polarizations and
intensity dependent dissipations which force the trajectories onto extremely narrow manifolds. The effect of
intensity dependent dissipations on Lyapunov numbers calculated in specific parts of the chaotic attractor is
also described.S1063-651X99)09402-7

PACS numbd(s): 05.45—a, 42.65.5f

[. INTRODUCTION coupled in a strict sense. The third mode is then unable to
“see” the chaotic pulsing of the first two modes and thus
In recent years much attention has focused upon the oegemains periodic.
currence of antiphase dynamics in globally coupled multi- In this paper we show that if one expands the scale of the
mode lasers. The root of such interest is the pioneering worklynamics of the third mode via a logarithmic transformation
of Baer[1] on the dynamics generated by a multima#e of the intensities then chaos is indeed observed in the time
coupled modessolid state laser with losses due to intracav-evolution of the orthogonally polarized mode because of the
ity second harmonic generation. The model introduced byoupling among all modes. What remains surprising is the
Baer has since been extended significantly by Roy and cobpservation that even if the dynamics of the third mode is
|ab0rat0rs[2] to include the effects of the birefringence of ChaotiC, its peak intensity and period remain very close to
the intracavity elements and the polarization of each modeyeripdic oscillations. Our main result is to explain this pecu-
This m_odell has peen studied |ntenS|VE|y from a nonlineayiar feature by showing that periodically the third mode be-
dynamlcs viewpoint both theoretically and numencally. Thecomes decoupled and experiences large intensity dependent
diverse range of dynamical phenomena encountered includgjgqinations. This forces the trajectory onto a very narrow
among others, intermittency3] and period doubling 4] manifold where widely different initial conditions keep gen-

routes to chaos, elimination of chaffs, chaotic itinerancy erating very close values of the third mode peak intensity.

[6] and, more importantly for our analysis, antiphase dynam:l_he intensity maxima of the third mode look periodic but its

ics [7]. Also, in some instances, good qualitative agreemen& ics is chaotic. W it our explanation with th
has been shown between the model and experinj@rs ynamics IS chaotic. YWe support our explanatio €

Of particular interest is the occurrence of antiphase dy_numerical evaluation of the divergence of the total flow, the
namics. Here the pulsations of modes with a given po|arizadivergence of the three modes taken separately and via local

tion are synchronized to that of orthogonally polarizedlyapunov numbers.
modes. The case of three mode antiphase dynamics is par- 1h€ paper is organized as follows. The model of Ref.
ticularly striking and has been studied in some detail in Refis briefly revised in Sec. II. Here we introduce the logarith-
[9]. Here two modes oscillate orthogonally to a third. Themic transformation used to show that chaos affects the dy-
onset of pulsations from the steady state occurs via a Hoplamics of all three coupled modéSec. Ill). In Sec. Il we
bifurcation [4]. One critical parameter in this system is a also show that antiphase dynamics leads to periodic decou-
geometrical factog that accounts for the relative angle be- pling of the modes. When the third mode has a high inten-
tween the fast axes of the intracavity elements and also phasdy, its evolution can be described as an overdamped oscil-
delays due to the birefringence of such elements. Indegd aslation in a modified Toda potential. Sec. IV is dedicated to
is changed the system is seen to pass through a region tife analysis of the chaotic dynamics in terms of the diver-
chaotic dynamics after a period doubling cascade. One ingence of the flow. We first show that the time-dependent
triguing finding of Ref.[9] was that while chaos is seen to divergence of the flow greatly simplifies after the logarithmic
develop in the dynamics of the two modes of the same potransformation. We then provide a clear-cut explanation of
larization, no chaotic behavior appeared in the third orthogothe “periodicity” of the peak intensities of the third mode in
nally polarized mode. In their paper, Mandel and Wang determs of periodic dynamical decoupling and intensity depen-
scribed this effect as an effective dynamical independence afent dissipations. Sec. V is devoted to another general fea-
the modes due to the antiphase relationship between modasre of systems with intensity dependent dissipations: wide
of orthogonal polarizationg9]: “effective” in the sense that variations of Lyapunov numbers in different parts of the
the modes pulsing with an antiphase relationship are not dgghase space. In particular, we show that the maxinfuwsi-
tive) Lyapunov number of antiphase chaos is locally nega-
tive when the intensity of the third mode is high. A final
*Electronic address: gianluca@phys.strath.ac.uk discussion and conclusions are contained in Sec. VI.
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Il. THE MODEL while the intensities of the first two modes and the total

The rate equations for a mulimode Nd:YAG ring Iasermtensny clearly display the doubling and chaotic behavior,

with counling and losses due to intracavity second harmonithe intensity of the third mode appears to remain anchored to
ping y period one oscillatiorf‘dynamical independence’ This

generation of a potassium titanyl phosph#@P) crystal intriguing phenomenon appears to be also in agreement with

are written a42] experiments on a Nd:YAG laser with modulated pupti].
The reasonable explanation provided in R&f] from the

% = ( Gy— a—gel k_zeE Mjkh) I, (1) direct observation of the intensity pulses is that the antiphase
dT i#k oscillations result in mode 3 evolving with a different dy-
namics to modes 1 and 2 because “mode 3 is already off
dGy¢ when modes 1 and 2 reach their peaks, and therefore mode 3
aTt 1Y l+|k+ﬁg‘k lj Gk}’ (2) does not record the chaotic nature of the other two modes”
[9].
wherek=1,2,... N is the modal index ant the number of To further investigate the phenomenon of dynamical in-

modes. Herel, and G, are, respecti\/e|y, the intensity and dependence we note that the equations for the inten$i<ties
gain associated with thth longitudinal modep is the cav-  contain a multiplicative, factor to all terms. This suggests
ity loss parametery is the small-signal gain, and is a that the dynamics is better unfolded when using a new set of
coefficient that gives a measure of the conversion efficiencyariablesS,=Inl, as demonstrated by Oppo and PdlitP]

of the intensity at the fundamental frequency into a mode afor single-mode lasers of clags After this change of vari-
the doubled frequenciits value is dependent on the proper- ables, the initial system of equations becomes

ties of the KTP crystal Furthermore,3(0<B<2) is a
cross saturation parameter that gives a measure of the com-
petition among the various longitudinal modes for a given
population inversion,r is equal tor./7; where 7. is the
cavity round-trip time,r; is the population lifetime and )
=t/7.. In this study the “active” parameter ig (0<g Gy=7
=<1), which corresponds to a geometrical factor dependent
upon the orientation of the fast axis of the YAG crystal rela- . . . o
ti\F/)e to the fast axis of the KTP crystal and also ac)::ounts fof O €=B=0 (i.e., no intracavity KTP crystalone trivially
the phase delays imposed by these two birefringent intraca\?-btalns uncoupled rate equations, one set for each '°F‘9't_“d"
ity elements. In this system the existence of Iongitudinal_nal mode. Such equations correspond to damped oscillations

modes of orthogonal polarizations is accounted for by thd" @ 'I}oda %otentia[lz].dA singkla %scillationegn "’.‘T"dﬁ. pho-
factor uj . As suchuj =g if modesj andk have the same tential can be separated into a lethargy tileduring whic

polarization and;, = 1—g if modesj andk are orthogonally the populatioer grows anq the optput intensity Is clqse to
polarized. As in many studies of this system we have mad ero and a spike F'mEZ during wh|ph the peak intensity of
the assumption that, y, B, and e are the same for all the output puls_e IS reach_e[dZ]. It is easy to see that the_
modes. It is important to note that cross saturation of th&€rdY dissipations of a single-mode laser take place mainly

active medium B1;G,) and sum-frequency generation due during tr;?hspfilke timer, .btln' fact, by evaluating the diver-
to the KTP crystal (2ul;ly) ensure global coupling gence of Ihe tlow one obtains
among the modes.

Sk=Gk—a—geexp(sk>—2e§kMjkexrxsp, 3)

Y= N

1+exp(sk)+32k exp(sj))ek
IE:

As the small signal gain is increased the solutions of Egs. . _@ ﬁ_ B _
(1) and(2) change from the steady state to a periodic oscil- div Fk_(?Sk AT 1texpS)]=—r(1+1,
lation via a Hopf bifurcatiorj4]. The simplest manifestation (5)

of antiphase dynamics is a periodic state in which the modal

intensities have similar profiles, but are shifted in time bywhich shows a constant rate of dissipations during the leth-
P/N whereP is the period andN is the number of modes. argy time and a variabléand, in principle, much larggrate
Many different types of dynamical behavior are possible inof dissipations during the spike time. The single-mode laser
this system but we will concentrate on the antiphase chaotiequations in the logarithmic scaling are perhaps the simplest
regime. Erneux and Mandgl0] have shown that antiphase example of a dynamical system with intensity dependent di-
dynamics can be obtained with as few coupled modes as twoergence(i.e., dissipationsin nonlinear optics. Dynamical

In this paper, however, we want to focus on the possibility offlows F(x) with variable dependent dissipations are defined
chaotic motion confined to modes with the same polarizatiorby the condition

during antiphase dynamics. In order to study such a situation

the minimum number of coupled modesNs=3, modes 1 divF(x)=—-T—-H(x), (6)
and 2 having the same polarization and mode 3 being or-
thogonally polarized. wherel is a real number larger or equal to zero afds a

Mandel and Wang9] studied the dynamical behavior of positive definite function of the dynamical variablesWe
the N=3-mode case in detail. In particular they showed thatwill see in Sec. IV that Eqs(3) and (4) form a dynamical
for 7./7:=0.002, 8=0.292, «=0.02, y=0.095, e=0.05, flow with intensity dependent dissipations and that this is the
andg decreasing from 0.56 to 0.5161 a full period doublingreason why the third mode can maintain “period-one” peak
cascade to chaos takes place. The surprising thing is thattensities while modes 1 and 2 display chaotic oscillations.
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FIG. 1. Period doubling route to chaos in the logarithig)(of the third laser mode intensity. After a chaotic window the system once
again returns to periodic behavior displayed in the last paned f00.513 861. The other parameters are given at the beginning of Sec. lIl.

lll. ANTIPHASE CHAOS AND PERIODIC is striking to note that while the majority of the 2D projec-
DECOUPLING tions contain clear signatures of chaos, the 2D projedtion
vs G3 looks like a period-one orbit. This phenomenon was
Our study starts from the numerical investigation of Ref.interpreted by Mandel and Wang as an effective dynamical
[9]. We taker./7:=0.002, 3=0.292, «=0.02, y=0.095, independence of orthogonal laser modes where the chaotic
€=0.05 and consider 0s5g=<0.56. Throughout our numeri- dynamics of modes 1 and 2 is not “recorded” by mode 3
cal analysis we use a standard variable step Adams integrfS].
tor. We start first from the period doubling cascade leading The logarithmic transformation helps us to better under-
to chaos for decreasing from 0.56 to 0.5. It is clear from stand the mode evolution during antiphase dynamics. When
Figs. Xa)-1(f), which display the temporal evolution &  the chaotic attractor is unfolded in th84,G3,G,) subspace
=Inl3, that mode 3 follows the same period doubling routeone can see the spreading of the trajectories on all projec-
to chaos displayed by modes 1 and(Rote that all quanti- tions (see Fig. 4 In particular, we reproduce the projection
ties are given in dimensionless unjt®ne clearly observes (S;,G3) of the third orthogonally polarized mode in Fig. 5
oscillating “minima” during the lethargy times of mode 3 where a magnification of the region of the attractor corre-
while the maxima of both; and S; would appear to repeat sponding to large values of the intensityis also displayed.
themselves after each period of the fundamental. The chaotic evolution of modes 1 and 2 is indeed recorded
Figures 2 and 3 present the main finding of R6f.inthe by mode 3 since the parameter values correspond to global
chaotic regime but withy=0.5145. The time evolution of coupling. What is still intriguing is that the chaos of mode 3
the intensity of mode 3 looks periodic while the intensities ofbecomes undetectable when monitoring, for example, the
the equally polarized modes 1 and 2 display the underlyingnaxima of the intensity;. This phenomenon cannot be ex-
chaotic dynamicgFigs. 2b) and Zc)]. Pulses of modes 1 plained by dynamical independence any longer since the
and 2 still occur at regular intervals since antiphase chaogarithmic transformation clearly shows that mode 3 is tak-
affects the pulse amplitudes but not their phd€dsFigure ing an active part in the antiphase chaos. We note however
3(a) shows a three-dimensional projection of the six-that during antiphase dynamics mode coupling terms can
dimensional chaotic attractor on thé;(G;,G;) subspace. widely change in magnitude leading to alternance between
The related two-dimensiond2D) projections are presented strong and weak mode-coupling regimes. In particular,
in Fig. 3(b). For completeness we also present in Fi(g) 3 whenever ; is large whilel; andl, are small, the dynamic
the projections of the attractor in thé;(l,,l3) subspace. It evolution of mode 3 is effectively decoupled from modes 1
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FIG. 2. Time evolution of antiphase chaos in the total intenkity () and in the modal intensitiel, (b), I, (c), andl; (d) for g
=0.5145. The other parameters are the same as Fig. 1.

and 2 and ruled, to first approximation, by Mode 3's dynamics then corresponds to strongly damped
_ oscillations on a time scale afr in a modified Toda poten-
S$3=G3—a—geexpSs), (7)  tial of the form
e 6
Ga= iy~ [1+exnS)1Gs). ® V(S)=(a+ ge)exp(S) + 5 exp28) —(y—a)S, (10)

This does not mean that mode 3 is decoupled from modes 1

and 2 since their dynamics is strongly affected by the evoluwnich is displayed in Fig. 6, with and without the modifica-

tion of mode 3. Conversely whekhy is close to zero, the tion (ge/2)exp(Z). Damping takes the third mode intensity
evolution of modes 1 and 2 affect mode 3 but not vice versaguickly to the minimum of the potential given by

For brevity we call these dynamical regimes “decoupled”
and refer to the oscillation between them as “periodic de- 1 P 2 4y
coupling.” However, it is important to note that the decou- ( )
pling is only unidirectional.

Going back to the situation dg>1,,l,, we obtain from ) ]
Egs. (7) and (8) that the temporal evolution of mode 3 is The trajectory then remains very close to such a valuk; of
periodically described by the following second-order differ- (for the parameters of Fig. B,,=1.0% . . .) until the cou-

I min= o 1 11
min~ 5 +g€ 2—+ . (11

ge

ential equation pling with modes 1 and 2 starts to grow. The first effect of
the growing intensitie$; andl, is to increase the magnitude
8.+ 7S 1+ (1+ge/ )expSy) ]+ a—y of the fixed termu in Eq. (7) thus decreasing the slope of the

negative side oV(S) until the minimuml .,;, disappears.
+(a+ge)exp(S;)+geexp2S;)]=0. (9)  Then, the mode-3 intensity begins to drop towards zero. Af-
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FIG. 3. Projections of the six-dimensional strange attractor during antiphase (@awsthe subspacd {,G3,G;), (b) on the planes
(13,Gy), (153,G4), and G41,G3), () on the planeslg,l,), (I3,14), and (,,l;). The parameters are the same as for Fig. 2.

ter the pulse formed by modes 1 andS3,is reinjected into  zation of the orthogonally polarized modes that trigger the
the modified Toda potenti@l0) and the cycle repeats again. next firing of thel ; intensity via the sudden decrease of the
At this stage we should emphasize the difference betweeaross-mode lossdsee the last term of Eq3)]. To further
the mode-3 dynamics of equatio(® and(4) and that of the clarify the role played by the gaiG; during the lethargy
decoupled equationd) and (8) whenl is low. In the case time we have plotted, in Fig. 8, the temporal evolution for
of single-mode clasB- dynamics, Eqs(7) and (8) with no  the antiphase dynamics of Ed8) and(4) [Fig. 8@)] and for
losses, it has been shown that “firing” of the laser intensitythe case of a single-mode claBdaser with no lossefFig.
occurs after a long duratiofiethargy time where the popu- 8(b)]. The vertical dashed lines correspond to the firing
lation grows slowly{12] (see the flat lower part of the dashed times. During the lethargy times ¢f the dynamics of the
orbit in Fig. 7. The dynamics are quite different when leth- third mode is not decoupled from the other modes and the
argy times occur during antiphase oscillations in the multi-Toda potential picture described above does not apply.
mode system(3), (4), see Fig. 2. After the single modeg An analogous, yet very different, dynamics takes place
dynamics in the Toda potential loses stability, i.e., escapeduring the decoupling at smali values. In this case the
from pointB of the solid curve in Fig. 7, the system quickly dynamics of modes 1 and 2 is described by coupled oscilla-
reaches poinf where the gairs; is at its maximum but itis  tors in modified Toda potentials. However, since the aim of
not able to trigger the next pulse as yet. In contrast to the the next section is to provide a clear-cut explanation of the
single classB mode laser with no losses, it is the destabili- pseudo-period-one behavior of the maximalgfin terms
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fluctuations whenl is very small but different from zero.
() Such fluctuations automatically exclude the possibility of
reachingl =0 and then remove the need of considering the
singularity of the logarithmic transformation.

IV. ANTIPHASE CHAOS AND INTENSITY DEPENDENT
DISSIPATIONS

The logarithmic transformation introduced in Sec. Il not
only helps to show that mode 3 is chaotic but also that it can
be used to exhibit that the multimode laser model under in-
vestigation belongs to the same class of dynamical systems
with variable dependent divergence of the kifi, as the
single-mode laser. In the case of a three-mode laser the di-
vergence of the original systeftt) and (2) is given by

divF, =G +Gy,+G3—3a—2€[g(l1+15)
+(1=-g)(I1+1,+213)]—ge(l1+1,+13)
=73+ (1+2B+ge/m)(I1+15+135)]. (12

It is difficult to asses from this form of the divergence, the
rate of contraction or expansion of the flow around a generic
trajectory. However, after applying the transformatiSn
=Inl;(i=1,2,3) the divergence of the flow changes to

divFg=—7{3+(1+28+gel/7)
X[exp(Sy) +exp(Sy) +exp(S) I}
=—73+(1+28+gel/7)(11+15,+135)]
=—7[3+(1+2B+ge/ 7)ol (13

A first inspection shows that the instantaneous value of the
divergence at a generic tintediffers before and after the
logarithmic transformation. Since such a transformation is
nonlinear but everywhere invertibl¢once the invariant
manifolds correspondent td,=0 are removed the
asymptotic time-average value of the divergence defined as

T
(divF)= lim Ef (divF)dt (19
T—o T 0
FIG. 4. (a) Projections of the six-dimensional strange attractor
during antiphase chada) on the subspacest,G3,G;), and(b) on is invariant under the logarithmic transformation. A simple
the planes $3,G3), (S3,G1), and G;,G3). The parameters are  comparison of Eq912) and(13) implies that the time aver-
the same as for Fig. 2. age of the quantity® defined as

of periodic decoupling and the intensity dependent dissipa- _ A
tions we leave this periodically decoupled regime to future (0)=(C1+ G+ Gy =3a—2¢[g(l1+12)
studies. +(1=g)(I1+1,+213)]—ge(l1+15+13)) (15
Before concluding this section, we point out that the loga-
rithmic transformation is trivially singular fdr,=0 and thus tends to zero a3 —«. This is numerically verified, for ex-
requires initial conditions of all the mode intensities to be asample, for the antiphase chaos of E¢B. and (2) in Fig. 9.
small as desired but different from zero. One may object thalt is important to note that the time-averaged asymptotic dis-
the deterministic dynamics may take the trajectory back tesipations are independent of the gain variables and of the
I,=0 before the generation of the nekimode pulse, thus cavity lossesa, a nontrivial result that would not appear
creating problems for the integration of E¢8) and(4). This  unless the logarithm transformation of Reff2] is employed.
is, however, not possible since it is easy to show that the Thus the logarithmic transformation serves not only to
surfaces withl, =0 are invariant manifolds of the system uncover the hidden dynamics of the mode-3 intensity but
and that oncé, =0 is reached, then themode is removed also to show clearly that the dissipations in this system are
from the dynamics. To maintain the physical reliability of intensity dependent. There is nothing strange in the nondis-
the model, one needs then to consider the effect of intensitgipative nature of the cavity loss terms since part of the en-
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FIG. 5. Projection of the six-dimensional strange attractor during antiphase chaos on thegl@g .(The inset shows a region of the
attractor with heavy contraction. The parameters are the same as for Fig. 2.

ergy provided by the external pump is extracted in the form of Eq. (13) allows us to define a contribution to the
laser output. Thus the terms accounting for the effect of theotal dissipation per mode given by
output mirrors in the original equations describe processes of
energy flow and not of energy loss as gorgeously outlined in divF=—7r{1+[1+(N-1)B+ge/7]l}.  (17)
[12]. , : .
Expression(13) unequivocally shows that the model of Itis ulseful for our purposes to separ_ate the d|fferent t_erms in
the three-mode laser with intracavity second harmonic genth® single-mode divergence according on their physical ori-
eration belongs to the class of dynamical systems with intendin- The first term— 7 represents losses due to spontaneous
sity dependent dissipations. Note also that this result is als8Mission. The term—7(1+ge/7)l, is labeled here as
valid in the case of a generic number of modésince the  Self’-mode dissipation and is composed of single-mode
divergence of the transformed flow is laser intensity losselcf. Eq. (5)] and dissipation due to the
intensity losses in the second harmonic generation. Finally,
divFs=—7{N+[1+(N—1)B8+ge/7]lio}. (16)  theterm—7(N—1)pl islabeled here as “cross”-mode dis-
sipation and describes losses due to mkaa modesj #k
One of the major implications of Eq$13) and (16) is that  through the second harmonic intracavity crystal.
each orbit of the dynamical system experiences different lev- We have numerically evaluated the total and single-mode
els of contraction depending upon the region of phase spaddissipations during antiphase dynamics and, in particular, an-
it currently resides in. Dissipations increase when the totatiphase chaos. Since the total intensity during antiphase
intensity increases while they remain close to a constant ratehaos remains always above a certain vald®8 for the
if all the mode intensities are low. For the values of theparameter configuration of Fig),2he chaotic attractor does
parameters of the antiphase chaos of Figs. 2 and 3, we finbt visit regions of the phase space where the total dissipa-
that the total intensity contribution to the dissipationstion is low. Things are very different for the dissipations
—71lioi(1+2B+gel/7) is always between 5 and 7 times associated with each mod&7) since the modal intensities
larger than the fixed contribution given by37. It is also  oscillate from close to zero to just below 1.5 in our normal-
important to note that more than 95% of the intensity depenized units. When, is smaller than say I¢ the contribution
dent contribution to the dissipations comes from the term®f modek to the dissipations is negligible. Then, only the
that describe the intensity dependent losses due to secomtbdes with sufficiently large intensity during a cycle of the
harmonic generation in the Eg€l). Finally, the particular antiphase dynamics contribute to the energy dissipations. In
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the total dissipations have a fairly small excursion, we expect
FIG. 6. Modified Toda potentigfL0) for the same parameters as from these considerations that, on average, mode 3 contrib-

Fig. 2 (solid ling). The dashed curve shows the Toda potential with-\;tes almost twice as much to the system divergence as
out the modificatiorge/2 exp(2) induced by the second harmonic modes 1 and 2 taken individually. This effect is simply a
crystal. result of the antiphase nature of the oscillations and is clearly

verified in Fig. 10(apart from an obvious bias term r due
particular, we note that during half of the antiphase cycleto the constant contribution from the spontaneous emission
while 15 is low, both modes 1 and 2 can provide non-of each modgwhere the calculation of the asymptotic time-
negligible contributions to the dissipations. However, duringaveraged dissipations of the entire flow and that due to all
the opposite phase of the antiphase cycle, mode 3 takes rarodes taken separately are presented.

sponsibility for the majority of the system dissipations. Since Let us focus now on the dissipations during periodic de-
coupling with largel ; and smalll; andl,. It is easy to see

that the total dissipationd 6) are mainly given by the spon-
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i . taneous emission contribution3+ due to all modes and by
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FIG. 7. 15 vs G; oscillations.(1): Motion generated in the mul- 0 2 4 6 8 10
timode system. Pointd and B represent quasisteady states| gf THO®

and G;. (2): Shifted (G3+0.027) oscillations in the single-mode

laser Toda potential. FIG. 9. Time average of the quanti® of Eq. (15).
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0.000 T T — ] TABLE |. Contributions to the divergencB; [see Eq.(18)],

[ i andD, [see Eq(19)] and total divergencksee Eq(13)] above and
below threshold values of the intensityl ;. Columns one and two
are the divergence contributidd,;, column three is the contribu-
tion D, while columns four and five contain the data for the total

-0.010 = i
<dv F,> ] flow divergence.

<div F>

1 D,/102 D,/10°2 D,/10°2 divF/10 % divF/1072
w <diVF3> : S (|3>S) (|3<S) (|3>S) (|3>S) (|3<S)

N 0.1 —-2.8703 —-0.2237 -0.5125 -—3.6298 —3.6380
] 0.2 —29521 -0.2239 -0.5159 -—-3.6316 —3.6356
0.3 —2.9908 -0.2552 -0.5176 —3.6331 —3.6338
0.4 —-3.0156 —-0.2654 -0.5186 —3.6346 —3.6322
05 —-3.0341 -0.2799 -0.5194 -3.6360 —3.6308
0.6 —3.0495 -0.2973 -0.5200 -—-3.6375 —3.6293
1 0.7 —-3.0637 -0.3202 -0.5206 —3.6277 —3.6334
<div Fio> ] 0.8 —-3.0778 —-0.3546 —-0.5212 —-3.6258 —3.6334

<div F>
-0.020

-0.030[ .

T T 0.9 —3.0937 -0.4172 —05219 —3.6446 —3.6233
00 05 1.0 15 20 10 -3.1166 —-0.6055 —0.5229 —3.6526 —3.6190
TM10°

FIG. 10. Plots of the time average of the contribution to the
divergence of each modgliv F;) (i=1,3) and the total system di-
vergence(div Fqy).

ues close to the same trajectory and the chaotic dynamics
will keep passing in the vicinity of the same valuesd gf(or

S;) over and over again. This fact combined with the ampli-
an intensity dependent contribution(1+ 28+ ge/ 7)1 5 due tude nature of antiphase chd®g forces very simila_r values

to the third mode onlysee Eq(17)]. Due to periodic decou- ©f ! (or S;) and G to be repeated after one period of the:
pling, the dynamics on the two dimensional projection antlphase dynar_mcs in agreement Wlth what was observed in
(15,G3) is described by Eq9) and the dissipations on such Figs- 3b) and Fig. S(especially its insgt ,

a plane are due to single-mode spontaneous emission and the"V& would like to stress that the explanation of the

self-mode terms pseudo-period-one behavior of the dynamicd pprovided
here is based on two fundamental ingredieif#: periodic
D,=—r1+(1+ge/1)l3]. (18)  decoupling, which makes the dynamicslgfand G; negli-

gibly affected by the other variables whenevegis large and
This immediately means that the dissipations in the fourd; andl, are small, andb) intensity dependent dissipations
dimensional projection spacé,(G,,l,,G,) are given by that explain why the chaotic attractor is squeezed in this part
of the phase space to a narrow shesee the inset of Fig.)5
Do=—27[1+pl3], (19  Itis also relevant to add that the narrowness of the intersec-
. tion of the chaotic attractor with thesg,G3) plane displayed
and are due to spontaneous emission and cross-mode ermMj$.rig 5 does not mean that the attractor is a tube since
The fact that D, contains I3 is no surprise sinc€ oits that appear very close in Fig. 5 may be quite distant

(11,G1,1,,G,) are affected by the dynamics of the third f,om each other in the complete phase space.
mode during periodic decoupling and there are cross-mode

losses induced by the second harmonic crystal. It is easy to
see that the contributioD is far bigger tharD, and as such

it constitutes the largest contribution to the total dissipation An objection to the explanation provided in the last sec-
wheneverl 3 is large. This is numerically verified in Table | tion for the appearance of pseudo-period-one behavior of the
where the separate contributions to the dissipations are dihird mode is that the presence of positive Lyapunov num-
vided into two categories|§{>s and |;<<s), averaged in bers has not been taken into consideration. In this section we
time and tabled for different values of the threshslduring  focus first on the spectrum of the global Lyapunov numbers
the antiphase chaos. It is then possible to conclude that duduring antiphase chaos and show that the magnitude of the
ing periodic decoupling at large intensities of the third modelargest Lyapunov number cannot affect the strong contrac-
the largest amount of dissipations take place on the twotion rates discussed above. More dramatically, we show also
dimensional sections,l {,G3) thus squeezing the chaotic that the strong intensity dependent dissipations due to large
manifold to a narrow sheet. Whatever the values ofi; can have crucial effects on “local” Lyapunov numbers,
(11,G1,1,,G,) provided that ; andl, are small, the projec- i.e. contraction(expansioh rates calculated in specific re-
tions of the chaotic trajectories on thé;(G3) section[or  gions of the phase space.

equivalently on the $3,G3) section$ will approach each Fig. 11 shows a calculation of the Lyapunov spectrum for
other at an exponential rate éf=—3X10 2 (see the first the antiphase chaos gt=0.5145. Note the very long nu-
column of Table ). This means that regardless of the injec-merical integration necessary to obtain well defined
tion values ofl; and G; into the modified Toda potential, asymptotic quantitieésee inset of Fig. )1 We have checked
intensity dependent dissipations will quickly relax their val- the correctness of the numerical result by comparing the sum

V. GLOBAL AND LOCAL LYAPUNOV EXPONENTS
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Ll T T T N ] TABLE II. Local maximum Lyapunov exponent above and be-
0.000P / 7 low threshold values of the intensityl ;. The third column con-
tains the sum of the local Lyapunov contributions suitably averaged
in time.
-0.005 - -
- . Amax/1073 Amax/1073 Amax/1073
S (I3>5s) (153<5)
-0.010— . 0.1 0.2588 —0.1482 0.07615
! ] 0.2 0.1637 —0.02346 0.07615
‘X‘O“'W 1 0.3 0.09017 0.06081 0.07615
0015  5x10%f ] ] 0.4 0.03153 0.1236 0.07615
o 1 0.5 —0.02019 0.1761 0.07615
st 0.6 —0.07264 0.2269 0.07615
0020 . ] 0.7 —0.1308 0.2803 0.07615
B T TR 1 0.8 —0.2005 0.3394 0.07615
| 0.9 —0.2900 0.4044 0.07615
b 1.0 —0.4333 0.4589 0.07615
-0.025 T =
0 5 10 15 20
TH0°

numbers for different values of in presented in Table II.
FIG. 11. Asymptotic convergence of the Lyapunov spectrumDuring periodic decoupling with largie the local Lyapunov
during antiphase chaos. The parameters are the same as for Fig.rRimber which on average will generate the largest positive
The inset shows an expanded view of the two largest Lyapunok.yapunov number, turns negative. We verify the correctness
exponents. of these calculations by checking that the sum of the two

local Lyapunov numbergabove and belove) keeps gener-
ating the largest time-averaged Lyapunov number once the
time averages are appropriately taken into accdseé the
third column of Table Il. The fact that the local Lyapunov
number is negative has a negligible effect on what was de-

ber calculationsand of the time averaged divergences asSC'iPed above. Orbits are getting closer not only in the

shown in the last sectioris an intrinsic aspect of systems (l3,G3) projections but also in all other projections yet with
with variable dependent dissipations since rates of contrac much smaller contraction rate. The local Lyapunov number
tion and expansion change in different regions of the phasB/ing negative with large; is also in perfect agreement
space. The convergence rate for the evaluation of the maxwith the difference in asymptotic total divergences above
mum Lyapunov number with a given accuracy is in our caséind belows as shown in last two columns of Table I. Such a
up to 100 times longer than, for example, in the Lorenzdifference may appear to be small but is enough to counter-
chaotic attractor, which has a constant dissipation rate oveact the effect of the small positive Lyapunov number.
the entire phase space. One may object that a similar alternance between local
The analysis of the Lyapunov spectrum shows that theositive and local negative Lyapunov numbers can also take
antiphase chaos described here is fairly weak since there jslace for the first negative Lyapunov exponent, thus re-
only one positive eigenvalue two orders of magnitudeintroducing the local chaos for lardg. This, however, can-
smaller than the flow divergence. During periodic decoumot be the case since the difference between the asymptotic
pling at large values of; the rate of contraction on the total divergences above and belswannot justify an excur-

two-dimensional planelg,Gs) is of the order of6=—3  sjon of local Lyapunov numbers of the order of £0
X 1072, i.e., more than two orders of magnitude bigger than

of all six Lyapunov numbers and the asymptotic total diver-
gence(see Fig. 10 In spite of the very different numerical
methods used we obtainédiv F)=—3.633 433 10 2 and
S\j=—3.633526<10" 2, i.e., a difference less than 18
The slow rate of asymptotic convergence of Lyapunov hum

the Iarges_t po;itive Lya_punov nu.mbe_r. This clearly proves VI. CONCLUSIONS
that the direction of orbit separation, if any, has to be per-
pendicular to thel;,G3) plane in agreement with our pre- In this paper we have shown that energy dissipations in

vious picture of the topology of the chaotic attractor as amodels of lasers with intracavity second harmonic generation
narrow sheet in this region of the six-dimensional phasebccur mainly at high output powers via nonlinear losses due
space. to the KTP crystal. Another generic feature of these systems
The independence of the pseudo-period-one dynamics d$ the occurrence of antiphase dynamics due to competing
mode 3 from the presence of antiphase ch@aes, positive  modes of orthogonal polarizations. The combination of these
Lyapunov numbepsis further justified when we consider the two generic features results in a splitting of dissipations be-
effect of strong intensity dissipations on the largest positivdween the two groups of orthogonally polarized modes. In
Lyapunov number. We have separated the calculation of ththe case of a group of equally polarized modes being formed
largest Lyapunov number above and below a certain thresty just one laser mode, dissipations are concentrated in the
old values of the intensityl ;. These numerical values are region of the phase space where the intensity of such a lone
defined as “local” Lyapunov numbers because they refermode is high and its dynamics are not affected by the other
only to a part of the strange attractor. The list of localmodes(periodic decoupling In such a region the attractor
Lyapunov (chaotic or periodigis strongly compressed to a very narrow
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manifold perpendicular to the plane of the intensity and gairone-like oscillations of mode-3 intensity during chaotic dy-
of the lone mode. Such narrowing can be so strong that localamics of a three-mode laser with intracavity second har-
Lyapunov numbersi.e. local rates of convergence or diver- monic generation.

gence of neighboring orbitsan be seriously affected to the  The effects described here are robust deterministic fea-
extent that they are all negative even in the presence of chdures that are only marginally affected by noise. In fact, an-
otic motion. The final and most intriguing effect of the in- tibhase chaos, and consequently periodic decoupling, has al-
tensity dependent dissipations in systems with antiphase ch&€ady been shown to survive noisy dynamics while it is
otic dynamics is that the maxima of the intensity of the lonelrivial to show that average contraction rates remain unal-

mode in one polarization appear periodic in spite of the un{€€d when small noise terms are added to the dynamical

derlying chaotic motion that affects and couples all of the€duations. This means that our explanation of the pseudo-
laser modes. period-one behavior of the third orthogonally polarized mode

We have first used a logarithmic transformation of theduring antiphase chaos, which is based on the intensity de-

mode intensitie$12] to show that terms usually associated pendent dissipations is robust to st(_)chastic perturbations.
with energy dissipations, such as cavity losses, correspond in Béfore concluding we would like to stress that the
real dynamical terms to energy flows. Then, for a three-mod@S€udo-period-one oscillation of mode 3 during chaotic evo-
laser with modes 1 and 2 polarized orthogonally to mode 3/Ution is just one of the many phenomena associated with
we have provided theoretical and numerical evidence of pev@fiable dependent flow divergence typical of single and
riodic decoupling(where the third mode affects the dynam- Multimode class lasers. For example, in limiting cases of
ics of modes 1 and 2 but the inverse is not Jristensity ~ C/2SSB lasers with injected signalsL3] or coupled to each
dependent dissipations and strong phase-space contractigi'e"[14], phase-space dependent contraction rates coupled
when the intensity of mode 3 is large. As a consequencéo reversibility leads to coexistence of conservative and dis-
chaotic trajectories are funnelled into a narrow manifoldSiPative dynamics. Here we have presented evidence that lo-
where displacements perpendicular to the trajectory on 52| Lyapunov numbers can be strongly affected by flow di-

(15,G5) projection relax exponentially at a rate of approxi- Vergences which —are variable —dependent. Such a
mately 3< 10~2 in normalized time units. With a single posi- phenomenon is no surprise if one thinks about the phase

tive Lyapunov exponent of the order of 1the attractor is space separated in regions of high expansion rates and re-
jons of high contraction rates. The dynamical behavior of

so strongly squeezed that exponential divergence of near .
gy sq b g tge laser output depends on both the Idcaintraction rates

trajectories becomes impossible to detect when monitorin d alobakch | fthe ph isited bv th
large intensities ;. This corresponds to forcing many differ- nd globalchaos topology of the phase space visited by the

ent orbits on the same chaotic attractor to generate almost ghgectory.
same value for the peak of the intensity of mode 3 as ob-

served in the numerical simulations. As a consequence, pe-

riodic decoupling and intensity dependent dissipations ex- We thank G. Connolly, S. C. Lyons, and L. S. Phillips for
tend and further elucidate the idea of the effectiveuseful discussions. We acknowledge EPSR&ant No.
“dynamical independence” of orthogonal modes suggestedGR/L 27916 and the European Commissi6AMR Network

in Ref. [9] as the mechanism for the explanation of period-QSTURCT) for financial support.
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